Part Number Hot Search : 
E30A2CDS LCX74 SFCB7336 SD103AW ST72101 FX826DW KBPC8005 1H220
Product Description
Full Text Search
 

To Download IRFR120Z Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFR120Zpbf irfu120zpbf hexfet ? power mosfet v dss = 100v r ds(on) = 190m ? i d = 8.7a  www.kersemi.com 1 automotive mosfet pd - 95772a specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating tempera- ture, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g description  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free features d-pak IRFR120Z i-pak irfu120z absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case ??? 4.28 r ja junction-to-ambient (pcb mount)  ??? 40 c/w r ja junction-to-ambient ??? 110 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) 35 0.23 20 max. 8.7 6.1 35 20 18 see fig.12a, 12b, 15, 16

 2 www.kersemi.com s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.084 ??? v/c r ds(on) static drain-to-source on-resistance ??? 150 190 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 16 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 6.9 10 q gs gate-to-source charge ??? 1.6 ??? nc q gd gate-to-drain ("miller") charge ??? 3.1 ??? t d(on) turn-on delay time ??? 8.3 ??? t r rise time ??? 26 ??? t d(off) turn-off delay time ??? 27 ??? ns t f fall time ??? 23 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 310 ??? c oss output capacitance ??? 41 ??? c rss reverse transfer capacitance ??? 24 ??? pf c oss output capacitance ??? 150 ??? c oss output capacitance ??? 26 ??? c oss eff. effective output capacitance ??? 57 ??? source-drain ratings and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 8.7 (body diode) a i sm pulsed source current ??? ??? 35 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 24 36 ns q rr reverse recovery charge ??? 23 35 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mh z v gs = 0v, v ds = 80v, ? = 1.0mhz v gs = 0v, v ds = 0v to 80v  v gs = 10v  v dd = 50v i d = 5.2a r g = 53 ? t j = 25c, i s = 5.2a, v gs = 0v  t j = 25c, i f = 5.2a, v dd = 50v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 5.2a  v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 25v, i d = 5.2a i d = 5.2a v ds = 80v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v

 www.kersemi.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v    


 
    
    0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v    


 
    
   4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60s pulse width t j = 25c t j = 175c 02468 i d, drain-to-source current (a) 0 2 4 6 8 10 12 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width

 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 100 200 300 400 500 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0246810 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 5.2a for test circuit see figure 13 0.0 0.5 1.0 1.5 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec

 www.kersemi.com 5 1e-006 1e-005 0.0001 0.001 0.01 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t j , junction temperature (c) 0 2 4 6 8 10 i d , d r a i n c u r r e n t ( a ) ri (c/w) i (sec) 0.33747 0.000053 1.793 0.000125 2.150 0.000474 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 5.2a v gs = 10v

 6 www.kersemi.com q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.9a 1.2 bottom 5.2a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 2.0 3.0 4.0 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a

 www.kersemi.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ' t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.01 0.1 1 10 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ' tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 4 8 12 16 20 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 5.2a

 8 www.kersemi.com fig 17. 
    

 for n-channel hexfet   power mosfets  ?  !  ? "  ?  #$!  %& p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -       '' ? ()""*+  ? '(&,' -  ? !  ""*'./'/ ? ' -  0'(-   v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f  ' "12 1 3 '. 0.1 %  '       + -  '' fig 18a. switching time test circuit fig 18b. switching time waveforms

 www.kersemi.com 9  

  

  
      
   12 in the assembly line "a" as sembled on ww 16, 1999 example: wi t h as s e mb l y t his is an irfr120 lot code 1234 ye ar 9 = 199 9 dat e code we e k 16 part number logo internat ional rect ifier as s e mb l y lot code 916a irf u120 34 ye ar 9 = 1999 dat e code or p = designates lead-free product (optional) note: "p" in as sembly line position indicates "l ead- f r ee" 12 34 we e k 16 a = as s e mb l y s i t e code part number irf u120 line a logo lot code as s e mb l y internat ional rectifier

 10 www.kersemi.com   
    
      
    
  as s e mb l y example: wi t h as s e mb l y this is an irfu120 ye ar 9 = 199 9 dat e code line a week 19 in the assembly line "a" as s e mbl e d on ww 19, 1999 l ot code 5678 part number 56 irfu120 international logo rectifier lot code 919a 78 note: "p" in as s embly line position indicates "lead-free"  56 78 as s e mb l y lot code rectifier logo international irfu120 part number we e k 1 9 dat e code year 9 = 1999 a = as s e mb l y s i t e code p = designates lead-free product (optional)

 www.kersemi.com 11   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 1.29mh r g = 25 ? , i as = 5.2a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR120Z

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X